3.2193 \(\int \frac{(d+e x)^2}{(a+b x+c x^2)^2} \, dx\)

Optimal. Leaf size=99 \[ \frac{4 \left (a e^2-b d e+c d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac{(d+e x) (-2 a e+x (2 c d-b e)+b d)}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )} \]

[Out]

-(((d + e*x)*(b*d - 2*a*e + (2*c*d - b*e)*x))/((b^2 - 4*a*c)*(a + b*x + c*x^2))) + (4*(c*d^2 - b*d*e + a*e^2)*
ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0512849, antiderivative size = 99, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {722, 618, 206} \[ \frac{4 \left (a e^2-b d e+c d^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}-\frac{(d+e x) (-2 a e+x (2 c d-b e)+b d)}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/(a + b*x + c*x^2)^2,x]

[Out]

-(((d + e*x)*(b*d - 2*a*e + (2*c*d - b*e)*x))/((b^2 - 4*a*c)*(a + b*x + c*x^2))) + (4*(c*d^2 - b*d*e + a*e^2)*
ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(3/2)

Rule 722

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(
d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[(2*(2*p + 3)*(c*d
^2 - b*d*e + a*e^2))/((p + 1)*(b^2 - 4*a*c)), Int[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ
[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m +
 2*p + 2, 0] && LtQ[p, -1]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(d+e x)^2}{\left (a+b x+c x^2\right )^2} \, dx &=-\frac{(d+e x) (b d-2 a e+(2 c d-b e) x)}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}-\frac{\left (2 \left (c d^2-b d e+a e^2\right )\right ) \int \frac{1}{a+b x+c x^2} \, dx}{b^2-4 a c}\\ &=-\frac{(d+e x) (b d-2 a e+(2 c d-b e) x)}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac{\left (4 \left (c d^2-b d e+a e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )}{b^2-4 a c}\\ &=-\frac{(d+e x) (b d-2 a e+(2 c d-b e) x)}{\left (b^2-4 a c\right ) \left (a+b x+c x^2\right )}+\frac{4 \left (c d^2-b d e+a e^2\right ) \tanh ^{-1}\left (\frac{b+2 c x}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.134299, size = 128, normalized size = 1.29 \[ \frac{a b e^2-2 a c e (2 d+e x)+b^2 e^2 x+b c d (d-2 e x)+2 c^2 d^2 x}{c \left (4 a c-b^2\right ) (a+x (b+c x))}+\frac{4 \left (e (a e-b d)+c d^2\right ) \tan ^{-1}\left (\frac{b+2 c x}{\sqrt{4 a c-b^2}}\right )}{\left (4 a c-b^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/(a + b*x + c*x^2)^2,x]

[Out]

(a*b*e^2 + 2*c^2*d^2*x + b^2*e^2*x + b*c*d*(d - 2*e*x) - 2*a*c*e*(2*d + e*x))/(c*(-b^2 + 4*a*c)*(a + x*(b + c*
x))) + (4*(c*d^2 + e*(-(b*d) + a*e))*ArcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]])/(-b^2 + 4*a*c)^(3/2)

________________________________________________________________________________________

Maple [B]  time = 0.155, size = 212, normalized size = 2.1 \begin{align*}{\frac{1}{c{x}^{2}+bx+a} \left ( -{\frac{ \left ( 2\,ac{e}^{2}-{b}^{2}{e}^{2}+2\,bcde-2\,{c}^{2}{d}^{2} \right ) x}{c \left ( 4\,ac-{b}^{2} \right ) }}+{\frac{ab{e}^{2}-4\,acde+bc{d}^{2}}{c \left ( 4\,ac-{b}^{2} \right ) }} \right ) }+4\,{\frac{a{e}^{2}}{ \left ( 4\,ac-{b}^{2} \right ) ^{3/2}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) }-4\,{\frac{bde}{ \left ( 4\,ac-{b}^{2} \right ) ^{3/2}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) }+4\,{\frac{c{d}^{2}}{ \left ( 4\,ac-{b}^{2} \right ) ^{3/2}}\arctan \left ({\frac{2\,cx+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(c*x^2+b*x+a)^2,x)

[Out]

(-(2*a*c*e^2-b^2*e^2+2*b*c*d*e-2*c^2*d^2)/c/(4*a*c-b^2)*x+1/c*(a*b*e^2-4*a*c*d*e+b*c*d^2)/(4*a*c-b^2))/(c*x^2+
b*x+a)+4/(4*a*c-b^2)^(3/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))*a*e^2-4/(4*a*c-b^2)^(3/2)*arctan((2*c*x+b)/(4*a
*c-b^2)^(1/2))*b*d*e+4/(4*a*c-b^2)^(3/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2))*c*d^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^2+b*x+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.83418, size = 1393, normalized size = 14.07 \begin{align*} \left [-\frac{{\left (b^{3} c - 4 \, a b c^{2}\right )} d^{2} - 4 \,{\left (a b^{2} c - 4 \, a^{2} c^{2}\right )} d e +{\left (a b^{3} - 4 \, a^{2} b c\right )} e^{2} + 2 \,{\left (a c^{2} d^{2} - a b c d e + a^{2} c e^{2} +{\left (c^{3} d^{2} - b c^{2} d e + a c^{2} e^{2}\right )} x^{2} +{\left (b c^{2} d^{2} - b^{2} c d e + a b c e^{2}\right )} x\right )} \sqrt{b^{2} - 4 \, a c} \log \left (\frac{2 \, c^{2} x^{2} + 2 \, b c x + b^{2} - 2 \, a c - \sqrt{b^{2} - 4 \, a c}{\left (2 \, c x + b\right )}}{c x^{2} + b x + a}\right ) +{\left (2 \,{\left (b^{2} c^{2} - 4 \, a c^{3}\right )} d^{2} - 2 \,{\left (b^{3} c - 4 \, a b c^{2}\right )} d e +{\left (b^{4} - 6 \, a b^{2} c + 8 \, a^{2} c^{2}\right )} e^{2}\right )} x}{a b^{4} c - 8 \, a^{2} b^{2} c^{2} + 16 \, a^{3} c^{3} +{\left (b^{4} c^{2} - 8 \, a b^{2} c^{3} + 16 \, a^{2} c^{4}\right )} x^{2} +{\left (b^{5} c - 8 \, a b^{3} c^{2} + 16 \, a^{2} b c^{3}\right )} x}, -\frac{{\left (b^{3} c - 4 \, a b c^{2}\right )} d^{2} - 4 \,{\left (a b^{2} c - 4 \, a^{2} c^{2}\right )} d e +{\left (a b^{3} - 4 \, a^{2} b c\right )} e^{2} - 4 \,{\left (a c^{2} d^{2} - a b c d e + a^{2} c e^{2} +{\left (c^{3} d^{2} - b c^{2} d e + a c^{2} e^{2}\right )} x^{2} +{\left (b c^{2} d^{2} - b^{2} c d e + a b c e^{2}\right )} x\right )} \sqrt{-b^{2} + 4 \, a c} \arctan \left (-\frac{\sqrt{-b^{2} + 4 \, a c}{\left (2 \, c x + b\right )}}{b^{2} - 4 \, a c}\right ) +{\left (2 \,{\left (b^{2} c^{2} - 4 \, a c^{3}\right )} d^{2} - 2 \,{\left (b^{3} c - 4 \, a b c^{2}\right )} d e +{\left (b^{4} - 6 \, a b^{2} c + 8 \, a^{2} c^{2}\right )} e^{2}\right )} x}{a b^{4} c - 8 \, a^{2} b^{2} c^{2} + 16 \, a^{3} c^{3} +{\left (b^{4} c^{2} - 8 \, a b^{2} c^{3} + 16 \, a^{2} c^{4}\right )} x^{2} +{\left (b^{5} c - 8 \, a b^{3} c^{2} + 16 \, a^{2} b c^{3}\right )} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^2+b*x+a)^2,x, algorithm="fricas")

[Out]

[-((b^3*c - 4*a*b*c^2)*d^2 - 4*(a*b^2*c - 4*a^2*c^2)*d*e + (a*b^3 - 4*a^2*b*c)*e^2 + 2*(a*c^2*d^2 - a*b*c*d*e
+ a^2*c*e^2 + (c^3*d^2 - b*c^2*d*e + a*c^2*e^2)*x^2 + (b*c^2*d^2 - b^2*c*d*e + a*b*c*e^2)*x)*sqrt(b^2 - 4*a*c)
*log((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c - sqrt(b^2 - 4*a*c)*(2*c*x + b))/(c*x^2 + b*x + a)) + (2*(b^2*c^2 - 4*
a*c^3)*d^2 - 2*(b^3*c - 4*a*b*c^2)*d*e + (b^4 - 6*a*b^2*c + 8*a^2*c^2)*e^2)*x)/(a*b^4*c - 8*a^2*b^2*c^2 + 16*a
^3*c^3 + (b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^2 + (b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x), -((b^3*c - 4*a*b*
c^2)*d^2 - 4*(a*b^2*c - 4*a^2*c^2)*d*e + (a*b^3 - 4*a^2*b*c)*e^2 - 4*(a*c^2*d^2 - a*b*c*d*e + a^2*c*e^2 + (c^3
*d^2 - b*c^2*d*e + a*c^2*e^2)*x^2 + (b*c^2*d^2 - b^2*c*d*e + a*b*c*e^2)*x)*sqrt(-b^2 + 4*a*c)*arctan(-sqrt(-b^
2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c)) + (2*(b^2*c^2 - 4*a*c^3)*d^2 - 2*(b^3*c - 4*a*b*c^2)*d*e + (b^4 - 6*a*b^
2*c + 8*a^2*c^2)*e^2)*x)/(a*b^4*c - 8*a^2*b^2*c^2 + 16*a^3*c^3 + (b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^2 + (b
^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x)]

________________________________________________________________________________________

Sympy [B]  time = 1.73342, size = 517, normalized size = 5.22 \begin{align*} - 2 \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \left (a e^{2} - b d e + c d^{2}\right ) \log{\left (x + \frac{- 32 a^{2} c^{2} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \left (a e^{2} - b d e + c d^{2}\right ) + 16 a b^{2} c \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \left (a e^{2} - b d e + c d^{2}\right ) + 2 a b e^{2} - 2 b^{4} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \left (a e^{2} - b d e + c d^{2}\right ) - 2 b^{2} d e + 2 b c d^{2}}{4 a c e^{2} - 4 b c d e + 4 c^{2} d^{2}} \right )} + 2 \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \left (a e^{2} - b d e + c d^{2}\right ) \log{\left (x + \frac{32 a^{2} c^{2} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \left (a e^{2} - b d e + c d^{2}\right ) - 16 a b^{2} c \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \left (a e^{2} - b d e + c d^{2}\right ) + 2 a b e^{2} + 2 b^{4} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{3}}} \left (a e^{2} - b d e + c d^{2}\right ) - 2 b^{2} d e + 2 b c d^{2}}{4 a c e^{2} - 4 b c d e + 4 c^{2} d^{2}} \right )} - \frac{- a b e^{2} + 4 a c d e - b c d^{2} + x \left (2 a c e^{2} - b^{2} e^{2} + 2 b c d e - 2 c^{2} d^{2}\right )}{4 a^{2} c^{2} - a b^{2} c + x^{2} \left (4 a c^{3} - b^{2} c^{2}\right ) + x \left (4 a b c^{2} - b^{3} c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(c*x**2+b*x+a)**2,x)

[Out]

-2*sqrt(-1/(4*a*c - b**2)**3)*(a*e**2 - b*d*e + c*d**2)*log(x + (-32*a**2*c**2*sqrt(-1/(4*a*c - b**2)**3)*(a*e
**2 - b*d*e + c*d**2) + 16*a*b**2*c*sqrt(-1/(4*a*c - b**2)**3)*(a*e**2 - b*d*e + c*d**2) + 2*a*b*e**2 - 2*b**4
*sqrt(-1/(4*a*c - b**2)**3)*(a*e**2 - b*d*e + c*d**2) - 2*b**2*d*e + 2*b*c*d**2)/(4*a*c*e**2 - 4*b*c*d*e + 4*c
**2*d**2)) + 2*sqrt(-1/(4*a*c - b**2)**3)*(a*e**2 - b*d*e + c*d**2)*log(x + (32*a**2*c**2*sqrt(-1/(4*a*c - b**
2)**3)*(a*e**2 - b*d*e + c*d**2) - 16*a*b**2*c*sqrt(-1/(4*a*c - b**2)**3)*(a*e**2 - b*d*e + c*d**2) + 2*a*b*e*
*2 + 2*b**4*sqrt(-1/(4*a*c - b**2)**3)*(a*e**2 - b*d*e + c*d**2) - 2*b**2*d*e + 2*b*c*d**2)/(4*a*c*e**2 - 4*b*
c*d*e + 4*c**2*d**2)) - (-a*b*e**2 + 4*a*c*d*e - b*c*d**2 + x*(2*a*c*e**2 - b**2*e**2 + 2*b*c*d*e - 2*c**2*d**
2))/(4*a**2*c**2 - a*b**2*c + x**2*(4*a*c**3 - b**2*c**2) + x*(4*a*b*c**2 - b**3*c))

________________________________________________________________________________________

Giac [A]  time = 1.11813, size = 188, normalized size = 1.9 \begin{align*} -\frac{4 \,{\left (c d^{2} - b d e + a e^{2}\right )} \arctan \left (\frac{2 \, c x + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{{\left (b^{2} - 4 \, a c\right )} \sqrt{-b^{2} + 4 \, a c}} - \frac{2 \, c^{2} d^{2} x - 2 \, b c d x e + b c d^{2} + b^{2} x e^{2} - 2 \, a c x e^{2} - 4 \, a c d e + a b e^{2}}{{\left (b^{2} c - 4 \, a c^{2}\right )}{\left (c x^{2} + b x + a\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^2+b*x+a)^2,x, algorithm="giac")

[Out]

-4*(c*d^2 - b*d*e + a*e^2)*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/((b^2 - 4*a*c)*sqrt(-b^2 + 4*a*c)) - (2*c^2*
d^2*x - 2*b*c*d*x*e + b*c*d^2 + b^2*x*e^2 - 2*a*c*x*e^2 - 4*a*c*d*e + a*b*e^2)/((b^2*c - 4*a*c^2)*(c*x^2 + b*x
 + a))